

- प्रश्न-पत्र में दाहिने हाथ की ओर दिए गए कोड नम्बर को छात्र उत्तर-पुस्तिका के मुख-पृष्ठ पर लिखें।
- कृपया जाँच कर लें कि इस प्रश्न-पत्र में 27 प्रश्न हैं।
- कृपया प्रश्न का उत्तर लिखना शुरू करने से पहले, प्रश्न का क्रमांक अवश्य लिखें।
- इस प्रश्न-पत्र को पढ़ने के लिए 15 मिनट का समय दिया गया है । प्रश्न-पत्र का वितरण पूर्वाह्न में 10.15 बजे किया जाएगा । 10.15 बजे से 10.30 बजे तक छात्र केवल प्रश्न-पत्र को पढ़ेंगे और इस अवधि के दौरान वे उत्तर-पुस्तिका पर कोई उत्तर नहीं लिखेंगे ।
- Please check that this question paper contains 15 printed pages.
- Code number given on the right hand side of the question paper should be written on the title page of the answer-book by the candidate.
- Please check that this question paper contains 27 questions.
- Please write down the Serial Number of the question before attempting it.
- 15 minute time has been allotted to read this question paper. The question paper will be distributed at 10.15 a.m. From 10.15 a.m. to 10.30 a.m., the students will read the question paper only and will not write any answer on the answer-book during this period.

रसायन विज्ञान (सैद्धान्तिक)

CHEMISTRY (Theory)

निर्धारित समय : 3 घण्टे Time allowed : 3 hours

अधिकतम अंक : 70 Maximum Marks : 70

सामान्य निर्देश ः

- (i) सभी प्रश्न अनिवार्य हैं।
- (ii) भाग अ : प्रश्न-संख्या 1 से 5 तक अति लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 1 अंक है।
- (iii) भाग ब : प्रश्न-संख्या 6 से 12 तक लघु-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 2 अंक हैं ।
- (iv) भाग स : प्रश्न-संख्या 13 से 24 तक भी लघू-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न के लिए 3 अंक हैं।
- (v) भाग द : प्रश्न-संख्या 25 से 27 तक दीर्घ-उत्तरीय प्रश्न हैं और प्रत्येक प्रश्न 5 अंकों का है।

1

- (vi) प्रश्न-पत्र में समग्र विकल्प नहीं दिया गया है। फिर भी एक अंक वाले दो प्रश्नों में, 2 अंकों वाले दो प्रश्नों में, तीन अंकों वाले चार प्रश्नों में तथा पाँच अंकों वाले तीन प्रश्नों में विकल्प दिया गया है। ऐसे सभी प्रश्नों में से आपको एक ही विकल्प का उत्तर देना है।
- (vii) यदि आवश्यक हो, तो आप लघुगणकीय सारणियाँ माँग सकते हैं। कैलकुलेटर के प्रयोग की अनुमति नहीं है।

56/1/1

[**P.T.O**.

General Instructions :

- (i) All questions are compulsory.
- (ii) Section A : Q. no. 1 to 5 are very short-answer questions and carry 1 mark each.
- (iii) Section B : Q. no. 6 to 12 are short-answer questions and carry 2 marks each.
- (iv) Section C : Q. no. 13 to 24 are also short-answer questions and carry 3 marks each.
- (v) Section D : Q. no. 25 to 27 are long answer questions and carry 5 marks each.
- (vi) There is no overall choice. However, an internal choice has been provided in two questions of one mark, two questions of two marks, four questions of three marks and all the three questions of five marks weightage. You have to attempt only one of the choices in such questions.
- (vii) Use log tables if necessary. Use of calculators is **not** allowed.

भाग : अ

SECTION : A

NaCl और AgCl में से कौन सा फ्रेंकेल दोष दर्शाता है और क्यों ?
 Out of NaCl and AgCl, which one shows Frenkel defect and why ?

2. निम्नलिखित को उनके क्वथनांकों के बढते क्रम में व्यवस्थित कीजिए :

(CH₃)₃N, C₂H₅OH, C₂H₅NH₂

Arrange the following in increasing order of boiling points :

(CH₃)₃N, C₂H₅OH, C₂H₅NH₂

3. कोलॉइडी अवस्था में औषध अधिक प्रभावशाली क्यों होती हैं ?

अथवा

इमल्शन (पायस) और जेल में क्या अन्तर है ?

Why are medicines more effective in colloidal state?

OR

What is difference between an emulsion and a gel?

56/1/1

1

1

- एक उदाहरण सहित उभदंती नाभिकरागी की परिभाषा लिखिए ।
 Define ambidient nucleophile with an example.
- 5. ग्लूकोस और फ्रक्टोज़ में मौलिक संरचनात्मक अंतर क्या है ?

अथवा

लैक्टोस के जल अपघटन के पश्चात् प्राप्त उत्पादों को लिखिए।

What is the basic structural difference between glucose and fructose ?

OR

Write the products obtained after hydrolysis of lactose.

भाग : ब

SECTION : B

6. निम्नलिखित प्रक्रमों के लिए संतुलित रासायनिक समीकरण लिखिए :

- (i) XeF2 जल अपघटित होता है।
- (ii) MnO2 को सान्द्र HCl के साथ गरम किया जाता है।

अथवा

निम्नलिखित प्रत्येक समुच्चय को इंगित गुणधर्म के अनुसार व्यवस्थित कीजिए :

- (i) $H_2O, H_2S, H_2Se, H_2Te अम्लीय प्रकृति के बढ़ते क्रम में$
- (ii) HF, HCl, HBr, HI आबन्ध एन्थैल्पी के घटते क्रम में

Write balanced chemical equations for the following processes :

- (i) XeF_2 undergoes hydrolysis.
- (ii) MnO_2 is heated with conc. HCl.

OR

Arrange the following in order of property indicated for each set :

- (i) H_2O, H_2S, H_2Se, H_2Te increasing acidic character
- (ii) HF, HC*l*, HBr, HI decreasing bond enthalpy

56/1/1

1

 वाष्पशील अवयवों वाले विलयन के लिए राउल्ट के नियम को परिभाषित कीजिए । सभी सान्द्रताओं पर राउल्ट के नियम को पालन करने वाले विलयन की दो विशिष्टताएँ लिखिए ।

State Raoult's law for a solution containing volatile components. Write two characteristics of the solution which obeys Raoult's law at all concentrations.

8. अभिक्रिया

$$2H_2O_2 \xrightarrow{I^-} 2H_2O + O_2$$

क्षारीय माध्यम

के लिए प्रस्तावित क्रियाविधि नीचे दी गई अनुसार है :

- (1) $H_2O_2 + I^- \rightarrow H_2O + IO^-$ (मन्द)
- (2) $H_2O_2 + IO^- \rightarrow H_2O + I^- + O_2$ (तीव्र)
- (i) अभिक्रिया के लिए वेग नियम लिखिए।
- (ii) अभिक्रिया की कुल कोटि लिखिए।
- (iii) पद (1) और (2) में से कौन सा पद वेग निर्धारक पद है ?

For a reaction

$$2H_2O_2 \xrightarrow{I^-} 2H_2O + O_2$$

the proposed mechanism is as given below :

(1) $H_2O_2 + I^- \rightarrow H_2O + IO^-$ (slow)

(2) $H_2O_2 + IO^- \rightarrow H_2O + I^- + O_2$ (fast)

- (i) Write rate law for the reaction.
- (ii) Write the overall order of reaction.
- (iii) Out of steps (1) and (2), which one is rate determining step ?
- 9. जब MnO₂ को KOH तथा KNO₃ जैसे ऑक्सीकारक के साथ संगलित किया जाता है तो गाढ़े हरे रंग का यौगिक (A) प्राप्त होता है । अम्लीय विलयन में यौगिक (A) अनुसमानुपातित होकर बैंगनी रंग का यौगिक (B) देता है । यौगिक (B) का क्षारीय विलयन KI को यौगिक (C) में ऑक्सीकृत कर देता है जबकि यौगिक (B) का अम्लीयकृत विलयन KI को (D) में आक्सीकृत कर देता है । (A), (B), (C) और (D) की पहचान कीजिए ।

When MnO_2 is fused with KOH in the presence of KNO_3 as an oxidizing agent, it gives a dark green compound (A). Compound (A) disproportionates in acidic solution to give purple compound (B). An alkaline solution of compound (B) oxidises KI to compound (C) whereas an acidified solution of compound (B) oxidises KI to (D). Identify (A), (B), (C), and (D).

4

56/1/1

2

10. संकुल $[Pt(en)_2 Cl_2]$ का IUPAC नाम लिखिए । इस संकुल के ज्यामितीय समावयवों की संरचना आरेखित कीजिए ।

अथवा

- (i) हेक्साऐम्मीनकोबाल्ट (III) सल्फेट
- (ii) पोटैशियम ट्राइऑक्सैलेटोक्रोमेट(III)

Write IUPAC name of the complex $[Pt(en)_2Cl_2]$. Draw structures of geometrical isomers for this complex.

OR

Using IUPAC norms write the formulae for the following :

- (i) Hexaamminecobalt(III) sulphate
- (ii) Potassium trioxalatochromate(III)

- (i) अनुचुंबकीय
- (ii) अधिक स्थायी
- (iii) आंतरिक कक्षक संकुल और
- (iv) उच्च प्रचक्रण संकुल

(Co का परमाणु क्रमांक = 27)

Out of $[CoF_6]^{3-}$ and $[Co(en)_3]^{3+}$, which one complex is

- (i) paramagnetic
- (ii) more stable
- (iii) inner orbital complex and
- (iv) high spin complex

(Atomic no. of Co = 27)

12. निम्नलिखित प्रत्येक अभिक्रियाओं में यौगिकों A और B की संरचनाएँ लिखिए :

2

2

भाग : स SECTION : C

13. प्लेटिनम की सतह पर NH_3 का विघटन शून्य कोटि की अभिक्रिया है । यदि इस अभिक्रिया का वेग स्थिरांक (k) 4 × 10⁻³ Ms⁻¹ है, तो NH_3 की प्रारम्भिक सांद्रता 0.1 M से घटकर 0.064 M होने में कितना समय लगेगा ?

The decomposition of NH_3 on platinum surface is zero order reaction. If rate constant (k) is 4×10^{-3} Ms⁻¹, how long will it take to reduce the initial concentration of NH_3 from 0.1 M to 0.064 M.

14. (i) गैस मास्क में सक्रियित चारकोल की क्या भूमिका है ?

(ii)

चित्र में दी गई विधि द्वारा एक कोलॉइडी सॉल बनाया गया । परखनली में बने जलयोजित फेरिक ऑक्साइड कोलॉइडी कणों के ऊपर क्या आवेश है ? यह सॉल कैसे निरूपित किया जाता है ?

6

(iii) ताप के साथ रसोवशोषण किस प्रकार परिवर्तित होता है ?

56/1/1

3

- (i) What is the role of activated charcoal in gas mask ?
- (ii) A colloidal sol is prepared by the given method in figure. What is the charge on hydrated ferric oxide colloidal particles formed in the test tube ? How is the sol represented ?

(iii) How does chemisorption vary with temperature ?

15. कोई तत्त्व फलक केन्द्रित घनीय (fcc) संरचना वाले जालक में क्रिस्टलीकृत होता है जिसके कोर की लम्बाई 300 pm है। तत्त्व का घनत्व 10.8 g cm⁻³ है। ज्ञात कीजिए कि 108 g तत्त्व में कितने परमाणु हैं।

An element crystallizes in fcc lattice with a cell edge of 300 pm. The density of the element is 10.8 g cm^{-3} . Calculate the number of atoms in 108 g of the element.

16. जल में सुक्रोस (M = 342 g mol⁻¹) के 4% विलयन (प्रतिशत द्रव्यमान w/w) का हिमांक 271.15 K है । जल में ग्लूकोस (M = 180 g mol⁻¹) के 5% विलयन का हिमांक परिकलित कीजिए ।
(दिया है : शुद्ध जल का हिमांक = 273.15 K)

A 4% solution(w/w) of sucrose (M = 342 g mol⁻¹) in water has a freezing point of 271.15 K. Calculate the freezing point of 5% glucose (M = 180 g mol⁻¹) in water. (Given : Freezing point of pure water = 273.15 K) (1/1 7 [P.T.O.

56/1/1

- परिष्करण विधि का नाम बताइए जो 17. (a) अतिशुद्धता वाले अर्धचालकों को प्राप्त करने के लिए प्रयुक्त होती है। (i) कम क्वथनांक वाली धातुओं को प्राप्त करने के लिए प्रयुक्त होती है। (ii) Cu₂S से कॉपर के निष्कर्षण में होने वाली रासायनिक अभिक्रियाओं को लिखिए। (b) Name the method of refining which is (a) used to obtain semiconductor of high purity, (i) (ii) used to obtain low boiling metal. (b) Write chemical reactions taking place in the extraction of copper from Cu₂S. निम्नलिखित के लिए कारण दीजिए : 18. संक्रमण तत्त्व और उनके यौगिक उत्प्रेरक की भाँति कार्य करते हैं। (i) $(Mn^{2+}|Mn)$ के लिए E° मान ऋणात्मक होता है जबकि $(Cu^{2+}|Cu)$ के लिए धनात्मक। (ii) ऐक्टिनॉयड अपने इलेक्टॉनिक विन्यासों में अनियतताएँ दर्शाते हैं। (iii) Give reasons for the following : (i) Transition elements and their compounds act as catalysts. E° value for $(Mn^{2+}|Mn)$ is negative whereas for $(Cu^{2+}|Cu)$ is positive. (ii) Actinoids show irregularities in their electronic configuration. (iii) निम्नलिखित बहुलकों को प्राप्त करने के लिए प्रयुक्त एकलकों की संरचनाएँ लिखिए : 19. नाइलॉन-6,6 (i) ग्लिपटल (ii) (iii) ब्यूना-S अथवा CH₃ क्या { CH2 – CH] , एक समबहुलक है या सहबहुलक है ? कारण दीजिए । (i) निम्नलिखित बहलक के एकलक लिखिए : (ii) $\left(\begin{array}{c} \dots & \dots & \dots \\ N & \dots & \dots \\ N & \dots & \dots \\ N & \dots & \dots \end{array}\right)_{n}$
 - (iii) रबर के वल्कनीकरण में सल्फर की क्या भूमिका है ?

56/1/1

3

Write the structures of monomers used for getting the following polymers :

- (i) Nylon-6,6
- (ii) Glyptal
- (iii) Buna-S

OR

- (i) Is $\{ CH_2 CH_1 \}_n$ a homopolymer or copolymer ? Give reason.
- (ii) Write the monomers of the following polymer :

CH₃

(iii) What is the role of Sulphur in vulcanization of rubber?

- 20. (i) नींद की गोलियों में किस प्रकार की औषध उपयोग होती है ?
 - (ii) टूथपेस्ट में किस प्रकार का अपमार्जक प्रयुक्त होता है ?
 - (iii) ऐलिटेम का उपयोग कृत्रिम मधुरक के रूप में अनुशंसित क्यों नहीं किया जाता है ?

अथवा

उचित उदाहरण सहित निम्नलिखित पदों को परिभाषित कीजिए :

- (i) विस्तृत-स्पेक्ट्रम प्रतिजीवाणु
- (ii) विसंक्रामी (डिसइन्फेक्टेंट)
- (iii) धनायनी अपमार्जक
- (i) What type of drug is used in sleeping pills ?
- (ii) What type of detergents are used in toothpastes ?
- (iii) Why the use of alitame as artificial sweetener is not recommended ?

OR

Define the following terms with a suitable example in each :

- (i) Broad-spectrum antibiotics
- (ii) Disinfectants
- (iii) Cationic detergents

- 21. (i) $(CH_3)_3C$ -Br और $(CH_3)_3C$ -I में से कौन $S_N 1$ के प्रति अधिक अभिक्रियाशील है और क्यों ? **3**
 - (ii) p-नाइट्रोक्लोरोबेन्जीन को जलीय NaOH के साथ 443 K पर गरम करने के बाद अम्लीकृत करने पर बनने वाले उत्पाद को लिखिए।
 - (iii) ब्यूटेन-2-ऑल के दक्षिण और वाम ध्रुवण घूर्णक समावयवियों को प्रभाजी आसवन द्वारा अलग करना क्यों कठिन होता है ?
 - (i) Out of $(CH_3)_3C$ -Br and $(CH_3)_3C$ -I, which one is more reactive towards S_N1 and why ?
 - (ii) Write the product formed when p-nitrochlorobenzene is heated with aqueous NaOH at 443 K followed by acidification.
 - (iii) Why *dextro* and *laevo* rotatory isomers of Butan-2-ol are difficult to separate by fractional distillation ?
- 22. एक ऐरोमेटिक यौगिक 'A', Br₂ और KOH के साथ गर्म किए जाने पर C_6H_7N अणुसूत्र वाला यौगिक 'B' बनाता है जो $CHCl_3$ और एल्कोहॉलिक पोटैशियम हाइड्रॉक्साइड के साथ गर्म करने पर दुर्गन्धयुक्त पदार्थ 'C' बनाता है । यौगिक A, B और C की संरचनाएँ और IUPAC नाम लिखिए ।

An aromatic compound 'A' on heating with Br_2 and KOH forms a compound 'B' of molecular formula C_6H_7N which on reacting with $CHCl_3$ and alcoholic KOH produces a foul smelling compound 'C'. Write the structures and IUPAC names of compounds A, B and C.

23. निम्नलिखित अभिक्रियाओं को पूर्ण कीजिए :

(i)
$$(i) \xrightarrow{CHO} \xrightarrow{NaCN/HCl}$$

(ii)
$$(C_6H_5CH_2)_2Cd + 2CH_3COCl \longrightarrow$$

CH₂

(iii)
$$CH_3 - CH - COOH \xrightarrow{(i) Br_2 / \text{ ener witwhite}} (ii) H_2O$$

अथवा

निम्नलिखित अभिक्रियाओं के लिए रासायनिक समीकरण लिखिए :

(i) प्रोपेनोन की तनु Ba(OH)₂ के साथ अभिक्रिया की जाती है।

- (ii) एसीटोफीनॉन की Zn(Hg)/सान्द्र HCl के साथ अभिक्रिया की जाती है।
- (iii) बेन्जॉयल क्लोराइड का Pd/BaSO4 की उपस्थिति में हाइड्रोजनीकरण किया जाता है।

56/1/1

3

Complete the following reactions : CHO NaCN/HC/

(i)
$$(C_6H_5CH_2)_2Cd + 2CH_3COCl \longrightarrow$$

(ii) $(C_6H_3CH_2)_2Cd + 2CH_3COCl \longrightarrow$

(iii)
$$CH_3 - CH - COOH \xrightarrow{(i) Br_2 / Red P_4} (ii) H_2O$$

OR

Write chemical equations for the following reactions :

- (i) Propanone is treated with dilute Ba(OH)₂.
- (ii) Acetophenone is treated with Zn(Hg)/Conc. HCl
- (iii) Benzoyl chloride is hydrogenated in presence of Pd/BaSO₄.
- 24. निम्नलिखित के बीच अन्तर कीजिए :
 - (i) ऐमिलोस और ऐमिलोपेक्टिन
 - (ii) पेप्टाइड बंध और ग्लाइकोसाइडी बंध
 - (iii) रेशेदार प्रोटीन और गोलिकाकार प्रोटीन

अथवा

D-ग्लूकोस की खुली संरचना में निम्नलिखित की उपस्थिति दर्शाने के लिए रासायनिक अभिक्रियाएँ लिखिए :

- (i) ऋजु शृंखला
- (ii) पाँच एल्कोहल समूह
- (iii) कार्बोनिल समूह के रूप में एल्डिहाइड

Differentiate between the following :

- (i) Amylose and Amylopectin
- (ii) Peptide linkage and Glycosidic linkage
- (iii) Fibrous proteins and Globular proteins

OR

Write chemical reactions to show that open structure of D-glucose contains the following :

- (i) Straight chain
- (ii) Five alcohol groups
- (iii) Aldehyde as carbonyl group

भाग : द

SECTION : D

दी गई रेडॉक्स अभिक्रिया के लिए $E^{\circ}_{\hat{H}\hat{m}} 2.71 \text{ V}$ है 25.

> $Mg_{(s)} + Cu^{2+}_{(0.01 M)} \longrightarrow Mg^{2+}_{(0.001 M)} + Cu_{(s)}$ अभिक्रिया के लिए E_{सेल} परिकलित कीजिए। विद्युत धारा के प्रवाह की दिशा लिखिए जब लगाया गया विपरीत बाह्य विभव है

- 2.71 V से कम और (i)
- 2.71 V से अधिक (ii)

अथवा

 ${
m FeSO}_4$ और ${
m ZnSO}_4$ विद्युत-अपघट्य से भरे श्रेणीक्रम में संयोजित दो विद्युत-अपघटनी सेलों ${
m X}$ (a) और Y में 2 एम्पीयर की स्थायी विद्युत-धारा तब तक प्रवाहित की गई जब तक Fe के 2.8 g सेल X के कैथोड पर निक्षेपित हुए। विद्युत धारा कितने समय तक प्रवाहित की गई ? सेल Y के कैथोड पर निक्षेपित Zn की मात्रा परिकलित कीजिए।

(मोलर द्रव्यमान : Fe = 56 g mol⁻¹ Zn = 65.3 g mol⁻¹), 1F = 96500 C mol⁻¹)

(b) मोलर चालकता (^m) और सान्द्रता के वर्गमूल (c^{1/2}) के बीच आलेख में दो विद्युत-अपघट्यों A और B के लिए निम्नलिखित वक्र प्राप्त हए :

निम्नलिखित के उत्तर दीजिए :

- विद्युत-अपघट्यों A और B की प्रकृति की प्रागुक्ति कीजिए। (i)
- (ii) विद्युत-अपघट्यों A और B की सान्द्रता जब शून्य की ओर पहुँचने लगती है तो $_m$ के बहिर्वेशन पर क्या होता है ?

 E°_{cell} for the given redox reaction is 2.71 V

 $Mg_{(s)} + Cu^{2+}_{(0.01 M)} \longrightarrow Mg^{2+}_{(0.001 M)} + Cu_{(s)}$

Calculate E_{cell} for the reaction. Write the direction of flow of current when an external opposite potential applied is

- less than 2.71 V and (i)
- greater than 2.71 V (ii)

56/1/1

12

(a) A steady current of 2 amperes was passed through two electrolytic cells X and Y connected in series containing electrolytes FeSO₄ and ZnSO₄ until 2.8 g of Fe deposited at the cathode of cell X. How long did the current flow ? Calculate the mass of Zn deposited at the cathode of cell Y.

(Molar mass : $Fe = 56 \text{ g mol}^{-1} \text{ Zn} = 65.3 \text{ g mol}^{-1}, 1F = 96500 \text{ C mol}^{-1}$)

(b) In the plot of molar conductivity (\wedge_m) vs square root of concentration $(c^{1/2})$, following curves are obtained for two electrolytes A and B :

Answer the following :

- (i) Predict the nature of electrolytes A and B.
- (ii) What happens on extrapolation of \wedge_m to concentration approaching zero for electrolytes A and B ?
- 26. (a) आप निम्नलिखित रूपान्तरण कैसे करेंगे ?
 - (i) फीनॉल को ऐनिसोल में
 - (ii) एथेनॉल को प्रोपेन-2-ऑल में
 - (b) निम्नलिखित अभिक्रिया की क्रियाविधि लिखिए :

$$C_2H_5OH \xrightarrow{H_2SO_4} CH_2 = CH_2 + H_2O$$

(c) बेन्ज़ीन की अपेक्षा फ़ीनॉल इलेक्ट्रॉनरागी प्रतिस्थापन अधिक आसानी से क्यों देता है ?

अथवा

- (a) निम्नलिखित के कारण दीजिए :
 - (i) p-नाइट्रोफ़ीनॉल की अपेक्षा o-नाइट्रोफ़ीनॉल अधिक भाप-वाष्पशील होता है।
 - t-ब्यूटिलक्लोराइड, सोडियम मेथॉक्साइड के साथ गर्म करने पर t-ब्यूटिलमेथिल ईथर के बजाय 2-मेथिलप्रोपीन बनाता है।
- (b) निम्नलिखित से सम्बद्ध अभिक्रियाएँ लिखिए :
 - (i) राइमर-टीमन अभिक्रिया
 - (ii) फ़ीनॉल का फ्रीडेल क्राफ्ट ऐल्किलीकरण
- (c) एथेनॉल और फ़ीनॉल में विभेद करने के लिए सरल रासायनिक परीक्षण दीजिए।

56/1/1

- (a) How do you convert the following :
 - (i) Phenol to Anisole
 - (ii) Ethanol to Propan-2-ol
- (b) Write mechanism of the following reaction :

$$C_2H_5OH \xrightarrow{H_2SO_4} CH_2 = CH_2 + H_2O$$

- (c) Why phenol undergoes electrophilic substitution more easily than benzene ? **OR**
- (a) Account for the following :
 - (i) o-nitrophenol is more steam volatile than p-nitrophenol.
 - (ii) t-butyl chloride on heating with sodium methoxide gives 2-methylpropene instead of t-butylmethylether.
- (b) Write the reaction involved in the following :
 - (i) Reimer-Tiemann reaction
 - (ii) Friedal-Crafts Alkylation of Phenol
- (c) Give simple chemical test to distinguish between Ethanol and Phenol.

27. (a) निम्नलिखित के कारण दीजिए :

- (i) वाष्प अवस्था में सल्फर अनुचुम्बकीय व्यवहार दर्शाता है।
- (ii) P-P आबन्ध की अपेक्षा N-N आबन्ध दुर्बल होता है।
- (iii) ऑक्सीजन की अपेक्षा ओज़ोन ऊष्मागतिकतः कम स्थायी है।
- (b) उत्सर्जित गैस का नाम लिखिए जब Cu को मिलाया जाता है :
 - (i) तनु HNO3 में और
 - (ii) सान्द्र HNO3 में

अथवा

- (a) (i) H₃PO₃ की अनुसमानुपातन अभिक्रिया लिखिए।
 - (ii) XeF4 की संरचना आरेखित कीजिए।
- (b) निम्नलिखित के कारण दीजिए :
 - (i) यद्यपि फ्लुओरीन की इलेक्ट्रॉन लब्धि एन्थैल्पी कम ऋणात्मक है फिर भी F₂ एक प्रबल ऑक्सीकारक है।
 - (ii) वर्ग 15 में N_2O_3 से Bi_2O_3 तक अम्लीय लक्षण घटता है ।
- (c) सल्फर डाइऑक्साइड गैस के परीक्षण के लिए एक रासायनिक अभिक्रिया लिखिए । सम्बद्ध रासायनिक समीकरण लिखिए ।

14

56/1/1

- (a) Give reasons for the following :
 - (i) Sulphur in vapour state shows paramagnetic behaviour.
 - (ii) N-N bond is weaker than P-P bond.
 - (iii) Ozone is thermodynamically less stable than oxygen.
- (b) Write the name of gas released when Cu is added to
 - (i) dilute HNO₃ and
 - (ii) conc. HNO₃

OR

- (a) (i) Write the disproportionation reaction of H_3PO_3 .
 - (ii) Draw the structure of XeF_4 .
- (b) Account for the following :
 - (i) Although Fluorine has less negative electron gain enthalpy yet F_2 is strong oxidizing agent.
 - (ii) Acidic character decreases from N_2O_3 to Bi_2O_3 in group 15.
- (c) Write a chemical reaction to test sulphur dioxide gas. Write chemical equation involved.

Strictly Confidential: (For Internal and Restricted use only) Senior School Certificate Examination March 2019 Marking Scheme – CHEMISTRY (SUBJECT CODE: 043) (PAPER CODE – 56-1-1)

General Instructions: -

- 1. You are aware that evaluation is the most important process in the actual and correct assessment of the candidates. A small mistake in evaluation may lead to serious problems which may affect the future of the candidates, education system and teaching profession. To avoid mistakes, it is requested that before starting evaluation, you must read and understand the spot evaluation guidelines carefully. **Evaluation is a 10-12 days mission for all of us. Hence, it is necessary that you put in your best efforts in this process.**
- 2. Evaluation is to be done as per instructions provided in the Marking Scheme. It should not be done according to one's own interpretation or any other consideration. Marking Scheme should be strictly adhered to and religiously followed. However, while evaluating, answers which are based on latest information or knowledge and/or are innovative, they may be assessed for their correctness otherwise and marks be awarded to them.
- 3. The Head-Examiner must go through the first five answer books evaluated by each evaluator on the first day, to ensure that evaluation has been carried out as per the instructions given in the Marking Scheme. The remaining answer books meant for evaluation shall be given only after ensuring that there is no significant variation in the marking of individual evaluators.
- 4. If a question has parts, please award marks on the right-hand side for each part. Marks awarded for different parts of the question should then be totaled up and written in the left-hand margin and encircled.
- 5. If a question does not have any parts, marks must be awarded in the left hand margin and encircled.
- 6. If a student has attempted an extra question, answer of the question deserving more marks should be retained and the other answer scored out.
- 7. No marks to be deducted for the cumulative effect of an error. It should be penalized only once.
- 8. A full scale of marks 0-70 has to be used. Please do not hesitate to award full marks if the answer deserves it.
- Every examiner has to necessarily do evaluation work for full working hours i.e. 8 hours every day and evaluate 25 answer books per day.
- 10. Ensure that you do not make the following common types of errors committed by the Examiner in the past:-
 - Leaving answer or part thereof unassessed in an answer book.
 - Giving more marks for an answer than assigned to it.
 - Wrong transfer of marks from the inside pages of the answer book to the title page.
 - Wrong question wise totaling on the title page.
 - Wrong totaling of marks of the two columns on the title page.
 - Wrong grand total.
 - Marks in words and figures not tallying.
 - Wrong transfer of marks from the answer book to online award list.
 - Answers marked as correct, but marks not awarded. (Ensure that the right tick mark is correctly and clearly indicated. It should merely be a line. Same is with the X for incorrect answer.)
 - Half or a part of answer marked correct and the rest as wrong, but no marks awarded.

- 11. While evaluating the answer books if the answer is found to be totally incorrect, it should be marked as (X) and awarded zero (0) Marks.
- 12. Any unassessed portion, non-carrying over of marks to the title page, or totaling error detected by the candidate shall damage the prestige of all the personnel engaged in the evaluation work as also of the Board. Hence, in order to uphold the prestige of all concerned, it is again reiterated that the instructions be followed meticulously and judiciously.
- 13. The Examiners should acquaint themselves with the guidelines given in the Guidelines for spot Evaluation before starting the actual evaluation.
- 14. Every Examiner shall also ensure that all the answers are evaluated, marks carried over to the title page, correctly totaled and written in figures and words.
- 15. The Board permits candidates to obtain photocopy of the Answer Book on request in an RTI application and also separately as a part of the re-evaluation process on payment of the processing charges.

Marking scheme – 2019

CHEMISTRY (043)/ CLASS XII

56/1/1

Q.No	Value Points	Marks
	SECTION A	
1	AgCl , Due to large difference in their size/ Due to small size of Ag^+ ion.	1/2 , 1/2
2	$(CH_3)_3N < C_2H_5NH_2 < C_2H_5OH$	1
3	Due to large surface area these are easily assimilated or adsorbed.	1
	OR	
3	Emulsion – both dispersed phase and dispersion medium are liquid	1
	Gel- Dispersed phase is liquid while dispersion medium is solid	
4	Nucleophiles having two nucleophilic centres. CN ⁻ /SCN ⁻ / NO ₂ ⁻ (any one)	1/2 , 1/2
5	Glucose has aldehydic group while fructose has ketonic group/ Glucose is aldose while fructose is	1
	ketose.	
	OR	
5	Glucose and Galactose	1
	SECTION B	
6	2XeF ₂ (s) + 2H ₂ O(l) \rightarrow 2Xe (g) + 4 HF(aq) + O ₂ (g)	1
	$MnO_2 + 4HCl \rightarrow MnCl_2 + Cl_2 + 2H_2O$	1
	OR	
6	i) $H_2O < H_2S < H_2Se < H_2Te$	1
	ii) HF> HCl > HBr > HI	1
7	For a solution of volatile liquids, the partial vapour pressure of each component of the solution	1
	is directly proportional to its mole fraction present in solution.	
	(i) $\Delta_{max}H = 0$, (ii) $\Delta_{max}V = 0$ (iii) The components have nearly same intermolecular force of	1/2, 1/2
	attraction (any two)	
8	i) Rate = k $[H_2O_2]$ [I]	1
	ii) order = 2	1/2
	iii) Step 1	1/2
9	$A = K_2 MnO_4 / MnO_4^{2-}$, $B = K MnO_4 / MnO_4^{}$, $C = IO_3^{}$ or KIO_3 , $D = I_2$	½ ×4
10.	Bis(ethan-1,2-diamine)dichloridoplatinum (II)	1
	en Pt en	
		1/ 1/
	en Cl	¹ / ₂ , ¹ / ₂
	Cis Trans	
10		1
10.	$(1) [CO(N\Pi_3)_6]_2(SO_4)_3$	
11		1/ ~1
11	i)[Co(en) ₂] ³⁺	⁷ 2 ×4
	$ (Co(en)_3)^{3+}$	

12	COOK COOH	½ ×4
	i) A= B=	
	$ \rangle = N - NH - C - NH_2$	
	SECTION C	
13	(R]0 - [R]t	
	$l = \frac{k}{k}$	1
	[0.1 - 0.064]	1
	$=\frac{100}{4X \ 10^{-3}}$	1 1
	= 9 s	1
14	i) Adsorption of toxic gases	1
	ii) Negative charge ; $Fe_2O_3 xH_2O/OH^2$	¹ / ₂ , ¹ / ₂
15	iii) Increases with increase in temperature/ First increases then decreases	1
12	$d = \frac{1}{a^3 N}$; m=Mass of element , N=number of atoms	Ţ
	$N = 108 \times 4$	
	10.8X27X10 ⁻²⁴	1
	$= 1.48 \times 10^{24} \text{ atoms}$	1
	Or	-
	$M = \frac{a^3 \times N_a \times d}{Z}$	1/2
	$\frac{27 \times 10^{-24} \times 6.022 \times 10^{23} \times 10.8}{10^{-24} \times 10^{-24} \times $	1
	$-\frac{4}{4}$	1/2
	-43.00 g III01 43.88 g mol ⁻¹ contains 6.02 x 10^{23} atoms	
	$6.02 \times 10^{23} \times 108$	
	So , 108 g contains = $\frac{0.02 \times 10^{-10} \times 100^{-10}}{43.88}$ = 1.48 × 10 ²⁴ atoms	1
16	$\Delta T_{\rm f} = K_{\rm f} {\rm m}$	1/2
	$K_f = \Delta T_f X \underline{M}_2 x \underline{W}_1$	
	w ₂ x1000	
	$= 2x 342 \times 96$	
	4x1000	
	= 16.4 K	1
	$\Delta I_{f} = K_{f} m^{2}$	
	$= \kappa_{f} \underline{W}_{2} \underline{X} \underline{U} \underline{U} \underline{U}$	
	$1 \times 12^{-16} \times 12^{-$	
	- <u>10.4 X J X 1000</u> 95v180	1
	= 4.8 K	1
	$\Delta T_{\epsilon} = T_{\epsilon}^{0} - T_{\epsilon}$	
	4.8 = 273.15 - T ₄	
	$T_f = 268.35 \text{ K}$	1/2
L		1

17	a) i)Zone refining ii)Distillation	1/2 , 1/2
	b) $2Cu_2S + 3O_2 \rightarrow 2Cu_2O + 2SO_2$	1
	$2Cu_2O + Cu_2S \rightarrow 6Cu + SO_2$	1
18	i) Due to variable oxidation state	1
	ii)Mn ²⁺ is stable due to exactly half filled 3d ⁵ configuration/ Due to high ΔaH ⁰ and low ΔhydH ⁰ for	
	Cu ²⁺ / Cu is positive.	1
	iii) Due to comparable energies of 5f, 6d and 7s orbitals.	1
19.	$HOOC(CH_2)_4COOH$ $H_2N(CH_2)_6NH_2$	1×3
	· · · · · · · · · · · · · · · · · · ·	
	ğ	
	ii) HO-CH ₂ -CH ₂ -OH ,	
	$-CH = CH_2$	
	H = CH - CH = CH	
10	i) Homopolymers single repeating unit	1/ 1/
19	N	/2 , /2
	H_2N V NH_2	
	N	1
	ii) NH ₂ HCHO (Or pames of monomers)	_
	iii) Sulphur forms cross links at the reactive sites of double bonds and thus the rubber gets	1
	stiffened / To improve the physical properties of rubber by forming cross links.	
20.	i) Tranquilizers	1
	ii) Anionic detergents	1
	iii) It is difficult to control the sweetness.	1
	OR	
20.	i) Antibiotics which kill or inhibit a wide range of Gram-positive and Gram-negative bacteria.	1/2 , 1/2
	ii) The chemicals which either kill or prevent the growth of microorganisms when applied to	1/ 1/
	inanimate objects such as floors, drainage system, instruments, etc.Example – 1% Phenol	/2 , /2
	solution (or any other)	
	iii) Cationic detergents are quarternary ammonium salts of amines with acetates, chlorides or	1/2.1/2
	bromides as anions where Cationic part is involved in cleansing action. Example –	/_ / / _
21	i) (CH.) C-I. Due to large size of iodine / better leaving group / Due to lower electronegativity	1/ 1/
21	Jici: OH	1
	(i) NaOH, 443K	-
	(ii) H [#]	
	ii) NO ₂ NO ₂	
	iii) Because enantiomers have same boiling points / same physical properties.	1
22	CONH ₂ NH ₂ NC	½ ×6
	A = , $B = $, $C =$	
22	A= Benzamide , B= Aniline , C= Phenylisocyanide / Benzeneisonitrile	
23	i) $2 CH_2COCH_2C_8H_5 + CdCl_2$	
	iii) (CH ₃) ₂ -C(Br)COOH	
		1

	$\frac{2.8}{mZn} = \frac{56}{2} \times \frac{2}{65.3}$ m _{Zn} = 3.265 g b) i)A- strong electrolyte , B-Weak electrolyte ii) Λ^0 m for weak electrolytes cannot be obtained by extrapolation while Λ^0 m for strong electrolytes can be obtained as intercept.	1 1 1
26	a) i) ii) $CH_3CH_2OH \xrightarrow{PCC,Heat} CH_3-CHO \xrightarrow{i)CH3MgBr ii)H+} CH_3CH(OH)-CH_3$	1
	(or any other correct method) H H H H H H H H H H H (b) H H H H Show H H	1/2
	$\begin{array}{cccc} H - \dot{C} - \dot{C} & H & H \\ H & H & H \\ H & H & H \\ H - \dot{C} & C^{+} & H \\ H - \dot{C} & C^{+} & H \\ \end{array} \begin{array}{c} H & H \\ H & H$	1/2
	c) Due to involvement of lone pair of oxygen in delocalisation makes the benzene ring electron rich.	1
	OR	
26	 a) i) <i>o</i>-Nitrophenol is steam volatile due to intramolecular hydrogen bonding while <i>p</i>-nitrophenol is less volatile due to intermolecular hydrogen bonding. ii) Due to the formation of stable intermediate tertiary carbocation / CH₃O⁻ being a strong base favours elimination reaction. 	1
	b) i) $\stackrel{OH}{\longrightarrow} \stackrel{OH}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{O}{\longrightarrow} \stackrel{OH}{\longrightarrow} \stackrel{OH}{\longrightarrow$	1
	 ii) (Award 1 mark if attempted in any way) c) Add neutral FeCl₃ to both the compounds, phenol will give violet colouration while ethanol does not. 	1 1
27	 a) i) In vapour state sulphur partly exists as S₂ molecule which has two unpaired electrons like O₂. ii) Due to greater interelectronic repulsion iii) Because decomposition of ozone into oxygen results in the liberation of heat (ΔH is 	1
	 negative) and an increase in entropy (∆S is positive), resulting in large negative Gibbs energy change (∆G) for its conversion into oxygen. b) i) NO gas/ Nitric oxide ii) NO₂ gas / Nitrogen dioxide 	1
		1,1
	OR	
27	a) i) ${}^{4\mathrm{H}_{3}\mathrm{PO}_{3}} \rightarrow {}^{3\mathrm{H}_{3}\mathrm{PO}_{4}} + \mathrm{PH}_{3}$	

